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Vortex-Induced Vibration of a Transversely Rotating Sphere
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Abstract

Vortex-induced vibration (VIV) of a sphere is one of the most
basic fluid-structure interaction problems. Since such vibra-
tions can lead to fatal structural failures, numerous studies
have focused on suppressing such flow-induced vibrations. In
this study, for the first time, the effect of an imposed trans-
verse rotation on the dynamics of the VIV of an elastically
mounted sphere has been investigated. It was observed that
the non-dimensional vibration amplitude for a rotating sphere
(A∗ =

√
2yrms/D, where yrms is the root mean square of the dis-

placement in the transverse direction and D = sphere diameter)
exhibits a bell-shaped evolution as a function of reduced veloc-
ity, similar to the classic VIV response of a non-rotating sphere.
The sphere is found to oscillate freely up to a rotation ratio α

(ratio of the equatorial velocity of the sphere to the free-stream
velocity) close to 0.5. For lower rotation ratios (α ≤ 0.3), the
response looks similar to the non-rotating case but with slightly
smaller vibration amplitude. For higher α values, the ampli-
tude was found to decrease significantly with the rotation up
to α = 0.5. The amplitude dropped drastically after it reached
the peak amplitude. This is unlike the VIV response of a ro-
tating circular cylinder where the vibration amplitude increases
up to three times the maximum vibration amplitude in the non-
rotating case due to a novel asymmetric wake pattern (see [1]).

Introduction

Vortex-induced vibration (VIV) of structures can occur in a va-
riety of engineering situations, such as bridges, transmission
lines, offshore structures, heat exchangers, tethered structures,
pipelines, and other hydrodynamic and hydroacoustic applica-
tions. This led to several comprehensive studies on VIV in the
past (see [8] and [6]). Since such vibrations impact on the fa-
tigue life of structures, they can lead to structural failures and
are an important source of fatigue damage of offshore oil explo-
ration and production risers. Numerous studies have focused on
suppressing such flow-induced vibrations, especially for cylin-
ders. However, there are no such studies for basic symmetrical
three-dimensional bodies like spheres. In spite of its ubiquitous
practical significance, there are few studies on the VIV response
of a sphere and its suppression. The question that arises is, how
can the VIV of such a simple 3D geometry be suppressed?

Previous numerical studies on the effect of rotation on rigidly
mounted rotating spheres at low Reynolds numbers (Re≤ 300)
([7], [4]) revealed suppression of the vortex shedding for a cer-
tain range of spin ratios. So can the structural vibrations of a
sphere be suppressed by an imposed rotation once the sphere
is free to oscillate? The previous investigations on the VIV of
spheres by [2] and [3], revealed that the sphere exhibits two
modes of vibration, namely, mode I and mode II when the os-
cillation frequency is of the order of the static body vortex shed-
ding. They showed that the vortex phase φv (phase difference
between the vortex force and the body displacement) gradually
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Figure 1: Definition sketch for the cross-flow VIV of a rotat-
ing sphere (Top view). The sphere undergoes free vibrations in
the transverse direction to the free-stream U∞ in the x-direction.
The sphere rotates in the clockwise direction with rotational rate
ω. Here k is the spring constant, and c is the damping of the sys-
tem.

changes from ∼ 50 degrees to ∼ 150 degrees from mode I to
mode II. But it is still unknown, how the vibration response of
the sphere changes when a transverse rotation is imposed.
This is the first study reporting the effect of an imposed trans-
verse rotation on the VIV response of a sphere. In the cur-
rent study, an elastically mounted sphere free to oscillate in
the transverse direction is considered over a wide range of pa-
rameter space of reduced velocities and rotational rates. The
Reynolds number (based on sphere diameter and flow velocity)
for the current study varies from 5000 to 30,000.
In this study, we seek to understand the following fundamental
questions: How does the imposed transverse rotation affect the
VIV response of the sphere? Does it suppress the vortex shed-
ding at this high Reynolds number? Does the sphere continue
to vibrate in the absence of vortex shedding?
In the first section, we will elaborate on the experimental meth-
ods used in the current study followed by a section on Results
and Discussions in which, the findings from the current study
are presented and discussed in detail.

Experimental Details

The experiments were conducted in the recirculating free-
surface water channel of the Fluids Laboratory for Aeronautical
and Industrial Research (FLAIR), Monash University, Aus-
tralia. The test section of the water channel has dimensions
of 600mm in width, 800mm in depth, and 400mm in length.
The free-stream velocity in the present experiments was varied
continuously in a range of 0.05 ≤U ≤ 0.45m/s, corresponding
to the pump frequency range of 5− 50Hz. The free-stream
turbulence levels were less than 1% for the current experiments.



Mass ratio m∗ m/(πρD3/6)

Amplitude ratios A∗y , A∗x Ax/D, Ay/D

Normalised velocity U∗ U/( fnD)

Scaled normalised velocity U∗s (U∗/ f ∗)S

Reynolds number Re UD/µ

Strouhal number S fvoD/U

Transverse frequency ratio f ∗ f/ fn

Damping ratio ζ c/2
√

k(m+mA)

Rotation ratio α Dω/2U

Table 1: Non-dimensional parameters. The added mass mA, is given by mA = CAmd , where md is the displaced fluid mass and CA is
the added mass coefficient (0.5 for a sphere). In the above parameters, fn is the natural frequency of the system, D = sphere diameter,
k = spring constant, ρ = fluid density, U = free stream velocity, µ = viscosity, m = total oscillating mass, c = structural damping, ω

= rotational speed of the sphere, fvo = non-oscillating body vortex shedding frequency, f = oscillation frequency, and Ax,Ay are the
oscillation amplitudes in x and y directions respectively.
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Figure 2: Schematic of the experimental setup used for the cur-
rent study.

The schematic for the experimental setup is shown in figure 2.
An air-bearing system with a low damping ratio was used
to provide low-friction motion in the transverse direction.
More details of the hydroelastic facility can be found in [9].
The body displacement was measured using a non-contact
(magnetostrictive) linear variable differential transformer
(LVDT). The fluctuating lift and drag forces were measured by
a six-axis force sensor (ATI mini40/IP68), which was attached
at the upper end of the rig. The sphere was driven at various
rotational speeds using a miniature low-voltage LV172 Parker
stepper motor. For each data set, the raw analog voltages were

acquired at 100Hz for 300 seconds at each flow velocity, and
were converted to digital signals using a differential DAQ board
system. The data sampling and recording were controlled
via customised LabVIEW 8.5 VI programs, while the data
processing and analysis were performed using MATLAB
codes.
The spherical model used in the present study was a precision
solid ball of diameter 80mm manufactured from acrylic plastic.
The diameter of the supporting rod was approximately 27
times smaller than the sphere. The rotating driving shaft was
covered with a non-rotating cylindrical shroud 6.35mm in
diameter so as to avoid any interference from the rotating shaft.
The top surface of the sphere was one diameter away from
the free-surface in order to avoid any free surface effects. [5]
reported that the free surface effect only kicks in when the
immersed length is less than 0.5 times the sphere diameter
for a tethered sphere. Free decay tests in water and air were
performed to obtain the natural frequency and damping ratio of
the system before each series of experiments.

Results and Discussions

Validation experiment: VIV of a non-rotating sphere

Figure 3 shows the classic one-degree of freedom vibration re-
sponse of a sphere compared to the one reported by [2]. The
mass ratio and the damping ratio for the current experiment
were 7.8 and 0.004 compared to 7 and 0.004, respectively, by
[2]. In figure 3, the non-dimensional amplitude of oscillations
(defined as A∗ =

√
2Arms/D) is plotted against the scaled U∗,

which is defined as U∗S = (U∗/ f ∗)S, where S is the Strouhal
number for the sphere. The lock-in starts at U∗ = 4−5 for the
sphere, which corresponds to a U∗s of 0.7−0.875.
It can be noted that the vibration response gradually progresses
to mode II from mode I, as opposed to the case of cylin-
ders, where a sudden jump is observed between the vibration
branches. In the case of cylinders, the sudden jump in ampli-



Figure 3: Comparison of the amplitude response obtained in
the current study to that of Govardhan et al (2005). The mass
ratio for the current study is 7.8 compared to a mass ratio of 7
in their study. The damping ratio was same in both the studies
(ζ = 0.004).

Figure 4: The variation of the total and vortex phase with the
reduced velocity compared to the data by [2]. The mass ratio
for the current experiment was 12 compared to 31.1 in their
study.

tudes is associated with a sudden jump in the total phase differ-
ence (phase difference between the total fluid force in the trans-
verse direction to the body displacement). However, in spheres,
the vortex phase gradually changes from∼ 50 degrees to∼ 160
degrees, as shown in figure 4. Figure 4 shows the variation of
the total and vortex phase difference with the reduced velocity
in comparison to the ones reported by [2] for somewhat differ-
ent experimental conditions.

For a very light tethered body, a desynchronised region can be
observed between the two modes [2]. For elastically mounted
bodies of higher mass, the transition is evident only as a dip in
the amplitude response. Figure 5 shows the variation of the non-
dimensional frequency f ∗ = f/ fn (the ratio of the dominant os-
cillation frequency to the natural frequency in the water) with
the reduced velocity. During lock-in (U∗ ∼ 4), the oscillation
frequency stays close to the natural frequency of the system.

VIV of a rotating sphere

A non-dimensional rotation ratio α is the main parameter

Figure 5: The frequency response corresponding to the same
experimental conditions as figure 3.

Figure 6: The variation of vibration amplitude response with
the reduced velocity for different α.

characterising the flow past rotating bluff bodies. It is defined
as α = Dω/2U , where ω is the rotation rate of the sphere in
radians per second. It signifies how fast the surface of the
sphere is spinning relative to the incoming flow velocity. For
investigating the effect of α on the vibration response of the
sphere, U∗ was varied from 3 to 14 in increments of 0.5. The
response was studied for 5 rotation ratios α = 0.0,0.2,0.3,0.4
and 0.5. For this set of experiments, the mass ratio of the
system was 14, the natural frequency in water was 0.28Hz, and
the damping ratio was 0.0059.

In figure 6, we see a classic VIV response for α = 0, when the
sphere is not rotating. When α is gradually increased from 0 to
0.3, the response shape looks similar to the non-rotating case,
but the amplitude of vibration decreases. For α ≥ 0.4, we see
a drastic drop in the response. For all these cases, the ampli-
tude suddenly drops after reaching the maximum amplitude of
oscillations. As the α is increased, the synchronisation region
(parameter space for which the resonance is observed) becomes
narrower. The magnitude of peak oscillation also decreases con-
sistently with the rotation up to α = 0.5.

The peak amplitude occurs for a smaller U∗ with increasing α.



Figure 7: The variation of the non-dimensional frequency of
oscillation of the sphere with the reduced velocity for different
α.

Figure 8: The variation of mean displacement of the sphere with
the reduced velocity for different α.

The dominant frequency of oscillations stayed close to the nat-
ural frequency of the system for all the α values as shown in
figure 7. This indicates that the rotation does not completely
suppress the vortex shedding and the sphere remains locked-in
for all the cases.
Figure 8 shows how the mean displacement of the sphere varies
with increasing rotation. The mean displacement initially is
zero for the non-rotating case but increases with the α, which
is an effect of the Magnus force acting on the sphere in the di-
rection of rotation. Vorticity measurements by [2] showed pla-
nar symmetric vortex loops emanating from the two sides of
a non-rotating sphere undergoing VIV. The transverse rotation
imposes asymmetry in the flow, causing the loops to bend to-
wards one side due to the Magnus effect, which in consequence
increases the ‘lift force’ in the direction of rotation. In the case
of cylinders, some novel asymmetric wake patterns were ob-
served with the transverse rotation, which led to an increase in
the oscillation amplitude up to 1.9 times the diameter [1]. How-
ever, the flow past a sphere is three-dimensional and complex.
How the transverse rotation changes the wake patterns and the
forces experienced by the sphere, is currently under investiga-
tion.

Conclusions

A series of experiments was performed to investigate the ef-
fect of transverse rotation on the VIV response of an elastically
mounted sphere in terms of amplitude and frequency response.
The amplitude of oscillations was lowered with increasing rota-
tion. The synchronisation regime became narrower and the peak
response occurred at a lower U∗ compared to the non-rotating
case. The frequency of oscillation remained close to the natural
frequency of the system for all the cases.
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